Caring for the CRC Patient with a Hereditary Syndrome: Surveillance of Other Organs & Surgical Decision Making

Emily Steinhagen, MD, FACS, FASCRS

Associate Professor of Surgery
Case Western Reserve University School of Medicine
University Hospitals Cleveland Medical Center

Emily.Steinhagen@Uhhospitals.org

Disclosures

No disclosures

Learning Objectives

Describe

screening recommendations for colonic and extra-colonic cancers for adenomatous polyposis syndromes

Compare and contrast

surgical options and indications for patients with hereditary CRC syndromes

Explain

the role of genetic testing in surgical decision making for patients with polyposis syndromes

Adenomatous Polyps & Colorectal Cancer

- Present on colonoscopy in 23-58% of adults
- May have multiple adenomatous polyps
- Most patients with multiple polyps do <u>not</u> have a genetic syndrome
- 20-30% CRC patients have a family history of CRC/polyps

Adenomatous Polyposis Syndromes

Familial
Adenomatous
Polyposis

Lynch Syndrome Familial
Colorectal
Cancer Type X

MYH-Associated Polyposis

Newly described syndromes

No clear syndrome

Clinical Case

- 51F with synchronous transverse and descending colon cancers
- PMHx: endometrial cancer
- Fam Hx: Father with rectal cancer ~70; brother died of brain tumor in childhood; paternal grandmother ?cancer
- Colonoscopy: 2 cancers; 2 tubular adenomas

Clinical Considerations

- Cancer treatment
- Extent of surgery
- Diagnosing a possible syndrome
- Screening & Surveillance of other organs
- Screening & Surveillance for at-risk family members
- Psychosocial and QoL impact

Lynch Syndrome

- 2-5% of CRC cases are related to LS
 - 8-17% of CRC cases under age 50
- Defect in mismatch repair genes
 - MLH1, MSH2, MSH6, PMS2
 - Less common: MSH3
- 1 in 370 individuals in the US carries a pathogenic mutation in a MMR gene
- Multiple polyps
- Early age of onset CRC: mean 45 years
- Accelerated adenoma to carcinoma sequence

Risk of CRC in Lynch Syndrome Patients

	MLH1		MSH2		MSH6		PMS2
Age	Male	Female	Male	Female	Male	Female	Both
30	4.5	0	2.6	1.9	0	0	0
50	33.6	20.8	18.1	16.9	6.3	4.4	0
75	57.1	48.3	51.4	46.6	18.2	20.3	10.4

Non-Colonic Malignancies in Lynch Syndrome

- Gynecologic
- Small bowel
- Gastric
- Hepatobiliary and pancreatic
- Urologic
- Breast and prostate
- Brain
- Skin

Risk of All Cancers in Lynch Syndrome

	MLH1	MSH2	MSH6	PMS2
Colon	46-61%	33-52%	10-44%	8.7-20%
Endometrial	34-54%	21-57%	18-49%	13-26%
Ovarian	4-20%	8-38%	1-13%	-
Renal pelvis/ureter Bladder	0.2-5% 2-7%	2.2-28% 4.4-12.8%	0.7-5.5% 1-8.2%	-
Small Bowel	0.4-11%	1.1-10%	1-4%	-
Pancreas	6.2%	0.5-1.6%	1.4-1.6%	-
Biliary	1.9-3.7%	0.02-1.7%	0.2-<1%	-

Clinical Features of LS-associated CRC

- Early-age of onset
- Predominance of R sided CRC
- Rapid progression of adenoma to carcinoma sequence
- Improved oncologic outcomes
- Decreased response to 5-FU based chemotherapy
- Response to immunotherapy

Gynecologic Malignancies in Lynch Syndrome: Endometrial & Ovarian

- Higher risk in MSH2 & MSH6
- Endometrial cancer
 - Lifetime risk:
 - 18-60% (MLH1); 20-60% (MSH2); 16-70% (MSH6); 13-24% (PMS2)
 - Mean age at diagnosis: 46-54 years
- Ovarian cancer
 - 7-24% lifetime risk
 - Mean age at diagnosis: 43-50 years
- Screening
 - Annual pelvic exam & endometrial biopsy
 - Initiate by age 30-35
 - Role of TVUS and CA-125 less clear
- Prevention
 - Prophylactic TAH/BSO by age 40
 - Offer TAH/BSO at time of colectomy

Small Bowel Cancer in Lynch Syndrome

- Higher risk in MSH2 & MSH6
- Lifetime risk: 0.6-7%
- Median age: 39—53 years
- Tumors evenly distributed throughout small bowel
- No routine screening

Gastric Cancer in Lynch Syndrome

- Rate of gastric cancer in Lynch Syndrome patients: 1.6%
- Lifetime risk 5-13%
- Median age at diagnosis: 49-55 years
- Risk highest in *MSH2*
- Screening
 - EGD + gastric antrum biopsy starting at age 30
 - Surveillance q2-4 years

Hepatobiliary & Pancreatic Cancer in Lynch Syndrome

- Lifetime risk of biliary cancer: .02-4%
- Median age at diagnosis: 54-57 years
- Lifetime risk of pancreatic cancer: 0.4-4%
- Median age at diagnosis: 63-65 years
- No recommended screening
 - May be detectable on ultrasound or with LFTs

Urologic Cancer in Lynch Syndrome

- Urothelial cell carcinoma
- Individuals with MSH2-MSH6 mutations
 - 0.4-20% lifetime risk
 - 20x risk of general population
- Median age: 56 years
- Screening: annual urinalysis/cytology starting age 30-35
 - Other options: cystoscopy, CT urogram
- Questionable increased risk of bladder cancer

Breast and Prostate Cancer in Lynch Syndrome

- Prostate cancer relative risk = 3.67
- Debatable increased risk for breast cancer
- Screening
 - Routine screening per guidelines
 - No evidence of early onset or higher stage at diagnosis

Surveillance for Non-Colonic Malignancies

Organ System	Surveillance Test	Frequency
Skin	Skin Exam	Annually
Gynecologic	Endometrial Biopsy ?TVUS, CA-125	Annually
Small bowel	Capsule endoscopy	No recommendation
Stomach	EGD	1-3 years
Hepatobiliary/Pancreas	?Ultrasound	No recommendation
Urologic	Urinalysis/Cytology	Annually
Breast cancer	Mammogram	Per general population guidelines

Family History: Amsterdam II Criteria

- At least 3 relatives
- At least 2 generations are affected
- At least 1 relative was diagnosed at 50 years of age or earlier
- 1 is a first-degree relative of the other two

Utility of Amsterdam Criteria

Sensitivity 40-80%

• Specificity: 50%

Positive Predictive Value: 75%

Impact of Pre-Operative Testing on Surgical Management of Lynch Syndrome

Extent of colorectal surgery

Consider STC at time of initial surgery

Consideration for other procedures

Consider prophylactic TAH/BSO in women beyond childbearing age

Colonoscopy recommended at 1-2 year intervals beginning at approximately age 25 for patients with LS

Benefits for at-risk family members

Prophylactic TAH/BSO during Colectomy for Lynch Syndrome

- Factors to consider:
 - Age
 - Family History
 - Genotype
 - Childbearing history & preferences

Risk of Endometrial Cancer			
General Population	1.67%		
MLH1	32.5%		
MSH2	44.6%		

Extent of Colectomy for Lynch Syndrome

	Segmental Resection	Total Abdominal Colectomy
Metachronous Adenoma	33%	11%
Metachronous Carcinoma	22-25%	0-8%

Immunotherapy for MMR-d CRC

PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer

Andrea Cercek, M.D., Melissa Lumish, M.D., Jenna Sinopoli, N.P., Jill Weiss, B.A., Jinru Shia, M.D., Michelle Lamendola-Essel, D.H.Sc., Imane H. El Dika, M.D., Neil Segal, M.D., Marina Shcherba, M.D., Ryan Sugarman, M.D., Ph.D., Zsofia Stadler, M.D., Rona Yaeger, M.D., et al.

- 12 patients with stage II-III MMR-d rectal cancer
- Treated with PD-1 inhibitor x6 months
- 100% clinical complete response
- Sustained at 12 months

Current Guidelines for Surgical Management of Lynch Syndrome

- 1. After diagnosis of CRC, total abdominal colectomy is preferred
- 2. But, segmental resection should be considered because of functional outcomes
- 3. Annual colonoscopy should be performed after segmental resection
- 4. In the setting of LS, rectal cancer should be treated with standard of care protocols and the decision for concomitant colectomy is individualized
- 5. TAH/BSO should be offered to women who have finished childbearing who are undergoing surgery for CRC

Lynch Syndrome – Bottom Line

- Patients are at risk for a variety of cancers
- Close surveillance is required
- Ideal to test at-risk family members
- Multi-disciplinary coordination leads to better outcomes

FAP Genetic Mutation

- Autosomal dominant
- Mutation: Adenomatous polyposis coli (APC) gene
 - Chromosome 5q21
- Tumor suppressor gene
- 25% of patients are de-novo mutations
- Anyone with >10-20 lifetime adenomas should have genetic testing

Clinical Case

- 23 year old female with anemia x 3 years; weight loss x20lbs
- Father died of CRC in 30s; paternal grandmother CRC in 60s
- Exam:
 - Rectal mass 1.5cm above anal verge
- EGD: Duodenal polyps
- Colonoscopy: diffuse polyposis from just above dentate through R colon
- MRI: T3N1
- CT no metastatic disease, no other abnormalities
- CEA 1.2

Clinical Issues

- Diagnosing a possible syndrome
- Rectal cancer treatment
- Screening & Surveillance of other organs
- Screening & Surveillance for at-risk family members
- Psychosocial and QoL impact
- Fertility

FAP Phenotype

- Classical: Hundreds to thousands of adenomatous polyps
- Median age for adenoma development: 17 years
- Median age for CRC: 40 years
- Untreated median age for death: 44 years

Classifying FAP by Phenotype

Phenotype	Codon	Estimated no. polyps	Age of onset
Attenuated	1-57 312-412 1596-2843	<100	Fourth and fifth decades
Intermediate	158-311 413-1249 1465-1595	Hundreds	Second and third decades
Severe/profuse	1250-1464	Thousands	First and second decades

Familial Adenomatous Polyposis

Benign lesions:

- Fundic gland polyps
- CHRPE
- Osteomas/fibromas
- Desmoid tumors
- Adrenal tumors

Other cancers

- Periampullary tumors
- Gastric Cancer
- Brain (Medulloma)
- Thyroid cancer
- Hepatoblastoma

Genotype-Phenotype Correlations in FAP

Gastric & Duodenal Lesions in FAP

- Fundic gland polyps
- Gastric Cancer
 - Lifetime risk <1%
 - ↑risk with carpeting, >20mm polyps, polypoid mounds, adenomas
- Duodenal adenomas & cancer

 - 50% periampullaryLifetime risk duodenal cancer 3-5%
 - Risk of duodenal polyps ~90%
 - Mean age 45-52 years
- Screening: EGD starting at age 25-30 years

 Surveillance interval based on findings (Spigelman staging of
 - Size, number, histology, dysplasia

Gastric & Duodenal Lesions in FAP

- Fundic gland polyps
- Gastric Cancer
 - Lifetime risk <1%
 - †risk with carpeting, >20mm polyps, polypoid mounds, adenomas
- Duodenal adenomas & cancer
 - 50% periampullary
 - Lifetime risk duodenal cancer 3-5%
 - Mean age 45-52 years
- Screening: EGD starting at age 25-30 years
 - Side viewing scope
 - Surveillance based on findings (Spigelman staging of polyps)

Desmoid Tumors in FAP patients

- 1 in 6 FAP patients develop desmoids after surgery
- Risk factors
 - Surgical trauma (major)
 - Female gender
 - Family history of desmoids
 - Mutation at 3' end APC gene
- Type of surgery (TAC vs RPC) no influence
- Young nulliparous women should undergo laparoscopic procedures

Thyroid Cancer in FAP patients

- Incidence 1-12% in registry studies
- Lifetime risk ~12%
- Mean age: 28 years
- Typically papillary cancer
 - Cribiform morular variant associated with FAP
- Screening: Thyroid ultrasound
 - High frequency of benign findings on ultrasound

Hepatoblastoma in FAP

- Incidence: 1.6%
- Male predominance
- Occurs early in life
- Screening: Ultrasound and α FP every 3-6 months starting at 6 months up to age 5-10 years
- Complicated decision because it requires genetic testing very early in life to determine if child is at-risk

Surveillance for Non-Colonic Malignancies in FAP

Organ System	Surveillance Test	Frequency
Stomach/ duodenum	EGD	At least every 3 years
Thyroid	Ultrasound	Annually
Liver (hepatoblastoma) *controversial	Ultrasound and alpha-fetoprotein	Every 6 months until 5-10 years of age
Adrenal	Ultrasound	Not recommended

Surgical Options for FAP patients

Total Abdominal Colectomy with IRA

- <30 polyps, able to clear endoscopically
- Surveillance and cancer risk

Proctocolectomy with ileal pouch-anal anastomosis (IPAA)

• Surveillance and cancer risk

Total proctocolectomy with permanent ileostomy

Comparing Surgical Options for FAP Patients

	IRA	IPAA
Operative Time		
Pelvic Dissection Sexual/Urinary functional outcomes		
Minimizing Future Cancer Risk		
Surveillance		
Bowel Function Seepage/Leakage Frequency of BMs		
Fertility/Fecundity		

Risk of Proctectomy after IRA: Genotype

Risk of Proctectomy After IRA: Phenotype

Rectal Polyps	Colon Polyps	Number of Patients	% Requiring Proctectomy
<20	<1000	95	0
<20	>1000	17	13%
>20	<1000	32	15%
>20	>1000	33	56%

Neoplasms in IPAA Pouch

- Cumulative risk of developing an adenoma in the pouch at 10 years: 42%
- Cumulative risk of developing a carcinoma in the pouch at 10 years: 0.5- 1%
- Most carcinomas develop at anastomosis or rectal cuff
- Management options:
 - Endoscopic polypectomy
 - Transanal excision
- May require pouch excision

MYH-Associated Polyposis

- Autosomal recessive gene
 - Carrier frequency in N America ~2%
- Variable penetrance
- Prevalence of 26-50% in patients with 10-100 adenomatous polyps; 7-29% in patients with 100-1000 polyps
- CRC between 4th and 7th decade
- Extracolonic tumor spectrum not well defined

Genetic Testing for MAP

- CRC diagnosed <40 years of age
- >10 adenomatous polyps in the absence of APC mutation
- Family history of CRC consistent with autosomal recessive pattern of inheritance, with or without polyps

Risk of CRC in MYH-Mutation Carriers

- Carrier frequency:
 - 2% in British/North American populations
 - 1.7-2.3% of CRC patients
- Odds-ratio CRC: 1.15-2.0

Extracolonic Manifestations in MAP Patients

Gastroduodenal lesions

- Duodenal adenomas and hyperplastic polyps
- Gastric adenomas
- Gastric fundic gland polyps
- Duodenal adenoma/cancer

Extraintestinal tumor sites

- Duodenum
- Breast
- Endometrial
- Ovarian
- Bladder
- Thyroid
- Skin (sebaceous adenoma, epidermoid cyst, etc)
- Lipomas

Management of MAP

Annual colonoscopy if adenomas can be cleared

Timing and extent of surgery depends on ability to clear poyps, rectal burden, presence of malignancy

Upper endoscopy beginning @ age 30

Lack of data to support any one approach – expert consensus

Non-Adenomatous Polyposis Syndromes

- Peutz-Jeghers Syndrome (PJS)
- Juvenile Polyposis Syndrome (JPS)
- PTEN Syndromes
 - Cowden Syndrome
 - Bannayan-Riley-Ruvalcaba Syndromes
- Serrated Polyposis Syndrome
- Hereditary Mixed Polyposis Syndrome

Who Should Get Genetic Evaluation?

- Anyone with a family member with + genetic syndrome
- Early age of onset (<45 years)
- Clinical criteria for non-adenomatous polyposis syndromes

Lynch Syndrome

- dMMR tumor
- Personal/family history of LS associated tumor at age <50
- 2+ family members with LS associated tumors (any age)

Polyposis Syndromes

- >20 adenomas (lifetime); consider if 10-19 polyps
- Family history of polyposis syndrome
- Bilateral CHRPE
- Cribiform morular variant thyroid cancer
- Desmoid, hepatoblastoma, unilateral CHRPE

Registries for Hereditary Cancer Syndromes

- Structured program to identify, track, follow at-risk patients
- Coordination of care
- Access to experts
- Tracking/data

Registries Improve Outcomes

Earlier detection of cancer

Improved mortality

Adherence to screening

Cascade of testing for at-risk family members

Psychosocial benefits

Access to clinical trials

Data for research to improve outcomes

Cost effective for hospital systems

Improved Mortality for Patients in Registries

- Dutch LS Registry: 146 families/2788 individuals
 - $-\downarrow$ 70% in standardized mortality ratio
- Enrollment → surveillance leads to ↓50% risk of CRC
- NHS study: registries improve identification of LS patients and subsequent cancer risks
- Registries ↑ uptake of prophylactic colectomy in FAP and ↓ risk of CRC/mortality

Impact of Registries on Family Members

 Danish Registry: Improved testing in at riskfamily members via outreach (7.3 additional individuals tested; 54% uptake)

Conclusions

- Early onset CRC patients need genetic evaluation
- Diagnosis of hereditary CRC syndromes impacts surveillance
 - Multi-disciplinary care essential
- Surgical recommendations vary with CRC syndromes
- Test patients and then at risk family members

Thank you

